1. K-means vs GMM, sum-product vs max-product

    I finished K-means and Gaussian mixture models in class last week or maybe the week before. I've previously discussed the fact that these two are really solving different problems (despite being structurally so similar), but today's post is about something different.There are two primary differences between the typical presentation of K-means and the typical presentation of GMMs. (I say "typical" because you can modify these algorithms fairly extensively as you see fit.) The first difference is that GMMs just have more parameters. The parameters of K-means are typically the cluster assignments ("z") and the means ("mu"). The ...
    Read Full Article

    Login to comment.

  1. Categories

    1. Default:

      Discourse, Entailment, Machine Translation, NER, Parsing, Segmentation, Semantic, Sentiment, Summarization, WSD
  2. Topics Mentioned

  3. Authors