1. Word Sense Disambiguation with Neural Language Models. (arXiv:1603.07012v1 [cs.CL])

    Determining the intended sense of words in text -- word sense disambiguation (WSD) -- is a long-standing problem in natural language processing. In this paper, we present WSD algorithms which use neural network language models to achieve state-of-the-art precision. Each of these methods learns to disambiguate word senses using only a set of word senses, a few example sentences for each sense taken from a licensed lexicon, and a large unlabeled text corpus.

    Read Full Article

    Login to comment.

  1. Categories

    1. Default:

      Discourse, Entailment, Machine Translation, NER, Parsing, Segmentation, Semantic, Sentiment, Summarization, WSD
  2. Authors