1. Deep structured semantic model produced using click-through data

    A deep structured semantic module (DSSM) is described herein which uses a model that is discriminatively trained based on click-through data, e.g., such that a conditional likelihood of clicked documents, given respective queries, is maximized, and a condition likelihood of non-clicked documents, given the queries, is reduced. In operation, after training is complete, the DSSM maps an input item into an output item expressed in a semantic space, using the trained model. To facilitate training and runtime operation, a dimensionality-reduction module (DRM) can reduce the dimensionality of the input item that is fed to the DSSM. A search engine ...

    Read Full Article

    Login to comment.

  1. Categories

    1. Default:

      Discourse, Entailment, Machine Translation, NER, Parsing, Segmentation, Semantic, Sentiment, Summarization, WSD